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Abstract
This paper presents some new statistical tests and new conjectures regarding
the correspondence between the eigenvalues of random unitary matrices and
the zeros of Riemann’s zeta function. Global features such as the trace and
number of eigenvalues in intervals are compared. Our results show satisfying
match-ups between the two domains. They give examples of large natural
datasets that follow classical distributions to high accuracy.

PACS numbers: 02.10.Yn, 02.10.De

1. Introduction

The Riemann hypothesis is one of the outstanding problems of modern mathematics. It posits
that all of the complex zeros of the zeta function

∑∞
n=1

1
ns with real part between 0 and 1 lie on

the line Re(s) = 1
2 . Polya and Hilbert suggested that one way to prove the Riemann hypothesis

is to find a self-adjoint operator whose eigenvalues are the zeros of the zeta function (suitably
shifted). This introduced a connection between zeros and eigenvalues which is actively being
pursued [35].

There is now considerable evidence that there is a close connection between the zeta zeros
and the eigenvalues of typical unitary matrices. Figure 1, based on the work of Odlyzko [46],
compares the spacings of consecutive zeros (based on 104 zeros starting with 1012), scaled to
have density one, with the spacings of consecutive eigenvalues of randomly chosen matrices
in the unitary group, Un, for n = 24. Also shown is the Wigner surmise: 32

π2 x
2 exp

(− 4
π
x2
)

[42]. The fit is good, and Odlyzko’s work shows that the fit gets better for higher zeros.
Spacings capture local features of the zeros and eigenvalues. In the paper we compare

global features of the eigenvalues of typical elements of Un to the zeros of the zeta function.

1.1. Method of comparison

Recall that the Riemann zeta function may be defined by ζ(s) = ∑∞
n=1

1
ns for Re(s) > 1. By

analytic continuation, it extends to the entire complex plane (sans a simple pole at 1). The zeros
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Figure 1. Histogram of zeta zeros spacings scaled to have mean 1 and matched spacing pdfs for
U24 (empirical) and the Wigner surmise.

Figure 2. Unitary eigenvalues. Figure 3. Uniform points. Figure 4. Picket fence model.

in the critical strip 0 � Re(s) � 1, Im(s) > 0 have been intensively studied. Good references
for what is currently known are Edwards [23], Titchmarsh [56] and Karatsuba-Voronin [34].
It is known, for example, that the zeta function has trivial zeros at −2,−4,−6, . . . and that all
nontrivial zeros are symmetric about the line Re (s) = 1/2. The Riemann hypothesis is that
all nontrivial zeros are on this line.

If N(T ) is the number of zeros in the strip up to height T, it is known [56] that

N(T ) = T

2π
log

T

2πe
+ O(log(T )). (1)

Thus, the zeros at height T have the approximate density 1
2π

log T
2π

.
The unitary group Un is the group of n × n complex matrices M such that MM∗ = I .

Such a matrix has eigenvalues {eiθ1, . . . , eiθn}. We will choose matrices from Haar measure
on Un [22]. Figure 2 shows the eigenvalues of a random matrix drawn from U42. In contrast,
figure 3 shows 42 points put down at random on the unit circle. It is evident that the unitary
eigenvalues are much more neatly distributed than uniform points. However, they are not as
regular as the evenly spaced ‘picket fence’ points in figure 4. The eigenvalues of random
unitary matrices have denisty n

2π
. Equating unitary and zeta densities suggests that we match

n with
⌊

log T
2π

⌋
.
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In the data used below we consider 50 000 consecutive zeros starting around the
1020 + 271 959 460th zero. According to Odlyzko [47] the 1020th zero equals 1

2 + iT20, with
T20 = 15, 202, 440, 115, 930, 747, 268.6290299 . . .

.= 0.15 × 1020. Thus log T
2π

.= 42.3.
Accordingly, in the following, the zeros at height T20 will be compared with random elements
in U42.

To compare the eigenvalues of random unitary matrices with the zeros of the
Riemann zeta function we put the zeros onto the unit circle according to the following
procedure: given a list of zeros, we split it up into groups and wrap each group onto the
unit circle, being careful to preserve the relative spacings. More precisely, suppose we have
zeros Z1, Z2, . . . , ZB of the form Zj = 1

2 + iτj , τ1 < τ2 < · · · < τB . We form the spacings
δj = τj+1 − τj and split the spacings up into disjoint groups of size n (as discussed, we
take n = 42). Each group of spacings δ1, . . . , δn is mapped onto the unit circle by taking
Xj = exp

(
2π i

(�j

�n
+ U

))
, for 1 � j � n, where �j = ∑j

k=1 δk is the cumulative sum of the
spacings and U is independently generated for each block according to the uniform distribution
on [0, 1). U is added to give each block an independent rotation.

1.2. A null hypothesis

We frame the connection between zeta zeros and eigenvalues as a formal statistical hypothesis.
To test this hypothesis, we devise several test statistics (functions of the data) whose distribution
under the null hypothesis is known. The null hypothesis will be rejected if these statistics take
exceptionally large values.

Hypothesis 1.1. For large T and B = o(
√

T ), let n = ⌊
log T

2π

⌋
. The N = �(B − 1)/n�

groups of zeros, wrapped around the unit circle, behave like independent draws from Haar
measure on Un.

In section 2, we compare the distribution of the trace of a random matrix to the ‘trace’ based
on the zeta zeros and find a remarkable goodness of fit. In section 3 we carry out a graphical
analysis based on strange correlations for unitary eigenvalues. Again the wrapped zeros show
remarkable fit to the predictions of random matrix theory. In section 4 we carry out two further
tests of the hypothesis. The first introduces a one-parameter family of alternatives based on
Selberg’s integral. This produces our only test which casts doubt on the null hypothesis. The
second test is a non-parametric Fourier-type test based on symmetric function theory. This
global test is shown to have power against nearby alternatives, but again fails to reject the null
hypothesis.

In section 5 we investigate the independence of successive blocks of zeta zeros. There
is substantial negative correlation between successive spacings. A subsampling analysis
shows that this does not materially affect our previous conclusions, but it leads to a modified
hypothesis. A final section draws some conclusions.

The results in this paper are based on our new wrapping technique which allows
comparison of the zeta zeros (on a line) with unitary eigenvalues (on a circle). We hope
our findings will also be of interest as natural real, large datasets where classical models (e.g.,
the standard exponential distribution of section 2) provide a good fit to data. As far as we
know, the tests presented here are the first careful statistical tests of a well-specified hypothesis
for this problem. As discussed in the literature review, random matrix theory is believed to fit
a rich variety of datasets in physics. Our tests and data-analytic procedures could prove useful
here as well.
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The present paper uses probabilistic techniques to analyse patently non-random data. Of
course, the digits of π and e are classical cases where such tests have been carried out. Chaotic
dynamical systems offer further examples.

1.3. Previous literature

Random matrix theory uses the eigenvalues of various ensembles of random matrices to model
natural phenomena. Perhaps the earliest work in this area is statistical in nature and studies
covariance matrices. Bai [3] and Johnstone [33] give up to date reviews of this work. Wigner
and Dyson suggest random matrix models for a variety of particle scattering data. This started
an avalanche of theoretical and applied work surveyed in Bohigas [8], Mehta [42], Hejhal
et al [31] and Guhr et al [29]. The last paper has a bibliography of 816 items.

One exciting development, the Bohigas conjecture [8], suggests that random matrix
statistics apply to the eigenvalues of the Laplacian on two-dimensional domains, provided
that billiards on these domains are chaotic. Empirical tests of the Bohigas conjecture have
used spacings. We hope to apply our wrapping ideas to compare these data with unitary
eigenvalues.

Connections between random matrix theory and the zeta zeros begin with the work of
Montgomery [43] and Odlyzko [46]. Berry [5] and Bogomolny-Keating [7] have developed
amazingly accurate models for two-point correlations. Their work shows that random matrix
theory alone is not sufficient to capture global properties of zeta zeros such as two-point
correlations; information about primes is needed as well. While much of this work is data
analytic and heuristic, there is much that can be proved. Katz and Sarnak [35] and Rudnick
and Sarnak [50] offer proofs of many findings. Berry and Keating [6] and Conrey [12] offer
up to date surveys.

Keating and Snaith [38, 39] have pioneered a fresh investigation based on matching zeros
at height T to the eigenvalues in Un with n of order log(T ). They have found a good match of
theory to data and used random matrix theory to give remarkable, precise conjectures on the
average order of powers of the zeta function on the critical line. Conrey and Gonek [14] offer
number theoretic background showing the usefulness of the correspondence between the zeta
function and the characteristic polynomial of a random element of Un. More recently, Conrey
et al [13] have used random matrix theory to give detailed heuristic asymptotic expansions
for zeta moments and Diaconu et al [17] have complemented these with heuristics based on
number theory.

To summarize, previous tests of random matrix theory have used local properties, such
as spacings, or global properties, such as the variance. For local properties, random matrix
theory provides a remarkable fit to the zeta zeros. For global properties, the correspondence
can break down. The present paper studies intermediate properties where the correspondence
seems to hold.

2. A trace test

This section compares the distribution of the trace of a random matrix with a parallel statistic
for the Riemann zeros.

For M chosen uniformly in Un, Diaconis and Mallows [18] proved that the trace of M has
an approximate complex normal distribution. This was refined by Diaconis and Shahshahani
[22], Stein [55] and Johansson [32]. One consequence of Johansson’s work is the following
approximation showing that the norm of the trace has an exponential distribution to remarkable
approximation.
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Figure 5. Zeta function based norm-squared-‘traces’ with standard exponential pdf superimposed.

Theorem 2.1. There are positive c, δ such that for all n � 1, for M chosen uniformly in Un

and for all t � 0,

|P(|tr M|2 � t) − e−t | � cn−δn. (2)

To compare theorem 2.1 with the zeta zeros, 50 000 consecutive zeros of the zeta function
starting near zero number 1020 + 271 959 460 were broken into 1190 blocks of length 42
and wrapped around the unit circle as explained in section 1.1. For each block, the ‘trace’
was computed, i.e. the sum of the 42 complex values on the circle. We denote the norm
squared of these sums by Wi for i from 1 to 1190. The W would be distributed according
to the exponential distribution with mean 1 (density e−x) to very good approximation if they
were actually formed from the trace of random matrices in Un, giving us a natural test of the
match-up.

Figure 5 shows a histogram and figure 6 a probability plot of these values plotted against
an exponential. The fit seems good in both cases, but both plots have their deficiencies. The
probability plot, for example, accentuates the tail variability at the cost of showing variation
for more central values.

We carried out two formal goodness-of-fit tests to compare {Wj }1190
j=1 with the exponential

distribution. The first test is the Anderson–Darling test [1]. This is based on

A2 =
∫ ∞

0

(F̂ (t) − F(t))2

F(t)(1 − F(t))
dF(t)

with F(t) = 1 − e−t the distribution function of the exponential distribution and F̂ (t) =
1

1190 |{j : Wj � t}|. In the experiment A2 = 1.1050. The distribution of A2 is known under
the null hypothesis and results of D’Agostino and Stephens [16] give P(A2 � 1.1)

.= 0.69.
We see that the observed value of A2 lies squarely in the centre of the distribution so that the
null hypothesis is not rejected in this case.

The second test carried out is Neyman’s smooth test ([45, 16], p 351). This transforms
the data to

[− 1
2 , 1

2

]
via Uj = 1 − e−Wj − 1

2 . Under the null hypothesis, {Uj } are independent
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Figure 6. Probability plot of norm-squared-‘traces’ relative to the standard exponential distribution.

uniform variates on
[− 1

2 , 1
2

]
. Neyman’s test computes the average of the first four orthogonal

polynomials pi (the Legendre polynomials on [− 1
2 , 1

2 ]) evaluated at these points:

Si = 1√
1190

1190∑
j=1

pi(Uj ) 1 � i � 4

where p1(x) = 2
√

3x, p2(x) = √
5(6x2 − 0.5), p3(x) = √

7(20x3 − 3x), p4(x) =
3(70x4 − 15x2 + 0.375).

Under the null hypothesis, {Si}4
i=1 approximately follow the standard normal distribution

so that the test statistic N∗ = ∑4
i=1 S2

i has an approximate chi-squared distribution on four
degrees of freedom. On the present data N∗ = 2.2848 and P(N∗ � 2.2848) = 0.3165. So
again we fail to reject the null hypothesis.

Fan [24] discusses other tests which, in a sense, interpolate between omnibus tests such
as the Anderson–Darling test and Neyman’s smooth test. The idea is to choose a possibly
growing number of orthogonal polynomials, where the number chosen is determined by the
data. For tests with power against ‘spiky’ alternatives, Fan suggests variants using wavelets.

Of course, there are a huge variety of possible tests (see D’Agostino and Stephens [16]
or the work of Verdinelli and Wasserman [57]). Before looking at our data, we choose two
well-known, standard tests with a good track record in applied work. We have resisted the
temptation to carry out dozens of further tests for fear of contaminating our results.

Note that 1190 is quite a large sample size; goodness-of-fit tests with such sample sizes
are notoriously difficult to pass with real data (see Diaconis and Efron [19]). We conclude that
the evidence of this section offers strong support for the hypothesis that consecutive blocks of
n = ⌊

log T
2π

⌋
zeros starting at height T wrapped around the circle have sums which behave

like the trace of independent picks from Haar measure on Un.
With some thought, however, we can find alternative models for which the trace tests

do not have much power of discrimination. The simplest such example is the picket fence
model in which n points are first evenly spaced on the unit circle and then each independently
perturbed by random noise, where the level of the noise is chosen so that the expected norm
squared of the trace is 1. This alternative model may be hard to discriminate because the trace
will be approximately normally distributed by the central limit theorem.
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For concreteness, to generate a realization from the picket fence model, let �j = anXj +
j/n + U for j from 1 to n, where the Xj are independent standard normal random variables,

and U is an independent uniform random variable. We choose an = 1
2π

√
log n

n−1 so that

E

∣∣∣∣∣∣
n∑

j=1

e2π i�j

∣∣∣∣∣∣
2

= 1.

Indeed, upon experimentation, we find that datasets containing 1190 realizations from this
picket fence model typically are not rejected by the Anderson–Darling or Neyman smooth tests.

The picket fence model is distinguished from Haar measure through the correlation tests
of section 3.3 and through the higher trace tests of section 4.2.

3. Correlations of points in intervals

This section presents a truly counterintuitive property of unitary eigenvalues. The match with
the zeta data may be our most surprising finding.

We first explain limiting and fixed n results for the unitary group. Then, the wrapped zeros
are compared with the unitary results and good agreement is found. Alternative hypotheses
(uniform points and picket fence models) are then considered. Finally, rigorous limiting
theorems of Wieand and Selberg are compared.

3.1. Unitary eigenvalues

Wieand [58] studied the joint distribution of eigenvalues of random elements of Un in several
intervals on the unit circle. She found that, normalized by mean and variance, the number
of eigenvalues in intervals have an unusual correlation structure. Consider two intervals
(e2π iα, e2π iβ) and (e2π iγ , e2π iδ). In the large n limit, Wieand proved.

Theorem 3.1. For a uniform random matrix in Un, the number of eigenvalues in two intervals
have the following limiting correlations as n tends to infinity:

• for disjoint intervals, zero correlation,

• for overlap, α < γ < β < δ, zero correlation,

• for α < β = γ < δ, correlation − 1
2 ,

• for α = γ < δ < β, correlation 1
2 ,

• For α = γ, β = δ, correlation 1.

Wieand’s results are described more carefully in section 3.4. To compare with the zeta
function, finite n results are needed.

For 0 � θ � 1, let I (θ) = (
e2π iθ , e2π i(θ+ 1

4 )
)
. This is an arc covering 1

4 of the unit circle.
For a matrix M ∈ Un let A(θ) = A(θ,M) be the number of eigenvalues of M in I (θ). We
consider

R(θ) = corr(A(θ,M),A(0,M)). (3)

We carried out a Monte Carlo experiment to determine R(θ) when M is chosen from
Haar measure. This required N independent matrices. As an empirical estimator on the data
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Figure 7. R̂(θ) versus θ for N = 1000 matrices in U42 (crosses) with analytical curve (solid)
superimposed.

{
e2π iθ (m)

j

}
(j from 1 to n,m from 1 to N) we use

R̂(θ) =
∑N

m=1

∫ 1
0 ηm(t)ηm(t + θ) dt − µ2∑N

m=1

∫ 1
0 ηm(t)2 dt − µ2

(4)

where ηm(t) = ∣∣{j : e2πθ
(m)
j ∈ I (t)

}∣∣ plays the role of A(θ,M) and µ = n
4 = EA(θ).

It is worth noting that this estimator takes advantage of the rotational symmetry of the
problem. Each realization of points on the circle is associated with the class, indexed by t, of
equally likely realizations that result from rotating by 2πt . Because of this symmetry, and our
reasonably large sample size, the resulting empirical correlation curves are more smooth than
might otherwise be expected.

Figure 7 shows R̂(θ) versus θ for 0 � θ � 1. It is based on N = 1000 matrices in U42.
Of course, when θ = 0, R(θ) = 1. The estimated correlation R̂(θ) drops close to zero and
then further to − 1

2 at θ = 1
4 when the intervals I (0) and I (θ) have exactly one endpoint in

common. For 1
4 < θ < 3

4 , the intervals are disjoint, and R̂(θ) goes back close to 0. Since
n is fixed at 42, there is a slight forced negative correlation (if A(0) is large, A(θ) must be
small). At θ = 3

4 , the intervals again abut and the correlation drops back to − 1
2 . Finally, the

correlation climbs back to zero and then to 1 for 3
4 < θ � 1.

Bump et al [11] prove

cov(A(0), A(θ))

n
=
(

1

4
− θ

)
+

+

(
1

4
− θ − 1

)
+

− 1

16

−
n∑

k=1

1 − k
n

π2k2

(
1 − cos

(
kπ

2

))
cos(2πkθ).
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Figure 8. R̂(θ) versus θ for the zeta function (circles).

Using this gives an analytic expression for R(θ). As can be seen in figure 7, the analytical
expression and the empirical estimate agree very well.

In light of the close match between simulation and theory it is natural to ask, ‘why bother
to derive the theory?’ In our work on the correlation plots of figure 9, we initially found a wide
discrepancy between the zeta data and the unitary data. For a while, this was one of our most
interesting findings and first draft of this paper included a page of discussion. As a routine
check we compared the unitary plot based on simulation with the theoretical approximation.
They were different, but subsequent runs of the simulation matched the theory. We never
located the glitch.

3.2. Zeros of Riemann’s zeta function

Odlyzko’s zeta data described in section 1 was wrapped around the circle to give 1190 fake sets
of eigenvalues. This data was treated as described in section 3.1. Figure 8 shows the unitary
and zeta plots superimposed. We also carried out a similar comparison based on correlation
between intervals of different lengths. The results for one interval being a quarter circle and
the other being a half circle are shown in figure 9. Again the two curves were very close. It
seems that the same strange correlations found by Wieand are present in the local structure of
the zeta zeros.

3.3. Alternative hypotheses

In this section we test the power of the graphical correlation test of figure 8 against two
alternative models.

3.3.1. Uniform points. Under the uniform model n points are independently and uniformly
put on the unit circle. This is independently repeated N times and the correlation between
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Figure 10. Uniform points.

A(0) and A(θ) is computed via definition (4). The result shown in figure 10 shows marked
deviations from the unitary and zeta function correlations.
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For the uniform model it is straightforward to derive an analytic expression for the
correlations. Let

Ĉ(θ) = E(N(0) − N̄(0))(N(θ) − N̄(θ))

E(N(0) − N̄(0))2

with N(θ) the number of points in (e2π iθ , e2π i(θ+π/4)).

Proposition 3.2. Under the uniform model, for 0 � θ � 1,

Ĉ(θ) = 16
3

{(
1
4 − θ

)
+

+
(
θ − 3

4

)
+

− 1
16

}
.

We have compared proposition 3.2 with the Monte Carlo data underlying figure 10, and
found an excellent fit.

3.3.2. Picket fence. Under a picket fence model, n points are put on the unit circle with
exactly equal spacing 2π

n
from a uniformly chosen start. The points are then perturbed by

adding independent random noise. Recall that data generated from this model passes the trace
test of section 2. For the present test, N independent repetitions are generated. The result is
shown in figure 11 for n = 42, N = 1000, and Gaussian noise centred at each point with

standard deviation a42 = 1
2π

√
log n

n−1 = 0.0247 (as defined at the end of section 2). This is

clearly different from the unitary and zeta data, but closer to these than the uniform model.
This shows that the graphical trace test can detect small departures from the null. Daley
has suggested using a nonparametric perturbation instead of this Gaussian one; we have not
attempted this.
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3.4. On limiting normality

Wieand [58] seems to have been the first to prove that if M is chosen uniformly in Un, then the
number of eigenvalues of M that lie in the intervals I1, I2, . . . , In, normalized by their means
and variances, have an asymptotic Gaussian distribution with mean zero and correlations given
by theorem 3.1. Earlier, Costin and Lebowitz [15] proved a similar Gaussian limit theorem
for a random Hermitian matrix (GUE). Soshnikov [53] has shown that their method can be
adapted to prove Gaussian limit theorems for a variety of matrix ensembles: basically, those
with k-point marginals representable as determinants. This gives a different proof of Wieand’s
result and extensions to much more general interval lengths. For comparison with Selberg’s
result we state the single interval theorem here.

Theorem 3.3 (Wieand). Let M be chosen uniformly in the unitary group Un. Fix 0 � α <

β < 1. Let N(α, β) be the number of eigenvalues of M in (e2π iα, e2π iβ). Then as n tends to
infinity, for all fixed real x,

P

(
N(α, β) − n|β − α|

1
π

√
log n

� x

)
→ 1√

2π

∫ x

−∞
e

−s2

2 ds.

Selberg [51] proved several results about the distribution of the number of zeta zeros in
a randomly chosen interval. Selberg’s limit results have been compared with data and with
unitary eigenvalues by Keating and Snaith [38] who found the actual distribution (based on
data) closer to the unitary ensemble than to the limiting normal approximation. In a remarkable
contribution, they used exact calculation from the unitary ensemble to predict the average order
of powers of ζ(s) on the critical line; the predictions match previously proved results and give
striking new conjectures.

For comparison, here is Selberg’s limiting result.

Theorem 3.4 (Selberg). For t chosen uniformly in [0, T ), let N(t) be the number of zeros in
the critical strip up to height t. Then, as T ↗ ∞

P

N(t) − t
2π

log( t
2πe

)√
1

2π2 log log T

� x

 → 1√
2π

∫ x

−∞
e

−s2

2 ds.

While both theorems 3.3 and 3.4 have normal limits, Wieand’s theorem involves
centring about n|β − α| while Selberg’s theorem involves centring about the random term
t

2π
log

(
t

2πe

)
.

A referee has pointed to work of Fujii [31, pp 219–67] which proves that for fixed h > 0,
as T ↗ ∞
1

T
P

{
T � t � 2T :

N(t + h) − N(t) − h
2π

log t
2π√

(log log T )/π2
� x

}
→ 1√

2π

∫ x

∞
e−s2/2 ds.

This may be a closer link to Wieand’s result.
We conclude this section by an empirical comparison of the distribution of eigenvalues

and zeros in an interval. To begin with, there is no reason to expect the limiting normal
distribution to be a particularly good approximation for n = 42 or T

.= 1020. Indeed, the error
terms in the normal approximation are often proportional to the standard deviations! Further,
for intervals covering 1

4 of the circle, the eigenvalue counts are 9, 10, 11 or 12 in most cases.
Table 1 shows the eigenvalue counts for 1190 random elements of U42 and for the zeta data
used above.
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Table 1. Table of ‘Eigenvalue’ counts for 1
4 circle based on a random sample of 1190 unitary

matrices and 1190 zeta-based datasets.

Count 7 8 9 10 11 12 13 14

Unitary 0 1 79 518 496 93 3 0
Zeta function 0 2 111 485 503 87 2 0

Note that the statistics in table 1 are not just the result of density matching; both the
unitary and zeta counts have some distribution on the integers and these data show that the
distributions are very similar.

We carried out a chi-square test for equality of distribution between the two rows
of the table. Pooling categories 8–9 and 12–13, let the table entries be Ti,j . Then

X = ∑4
j=1

(T1,j−T2,j )
2

T1,j +T2,j
= 7.042. Under the null hypothesis, X has an approximate chi-square

distribution on three degrees of freedom and P
(
χ2

3 � 7.042
) .= 0.071. This does not reject

the null hypothesis 1.1.

3.5. A cautionary note

We end with a cautionary note. Recent work surveyed in [5–7] has emphasized that random
matrix theory alone does not suffice to match all questions about the zeta function; some
number theory must also be built in. A striking example of this is Berry’s work on the variance
of the number of zeros in an interval of length L, chosen at random, e.g., in (T , 2T ) for T large.
Random matrix theory predicts that this is of order log L while Berry’s formula (and data)
shows it is not monotone in L. Since the variance determines the covariance by polarization,
the close match in figures 8 and 9 may not hold for sufficiently large T.

4. Two further tests

To begin with, recall that according to [36], the n eigenvalues {eiθ1 , . . . , eiθn} of a matrix M
drawn from Un have the following density:

f2(θ1, . . . , θn) = 1

(2π)nn!

∏
1�j<k�n

|eiθj − eiθk |2. (5)

The problem of testing the goodness of fit of the wrapped zeros to (5) with 1190
observations in 42 dimensions is akin to testing for randomness when a few balls are dropped
into a huge number of boxes. Indeed, if each of the 42 coordinates was divided into two, the
sample space is divided into 242 .= 4.4 × 1012 cells. A naive chi-square test of the hypothesis
is hopeless.

It seems natural to lump the data in some cruder way. The tests in sections 2–4 accomplish
this through natural statistics such as the trace and correlations.

This section constructs two further tests along classical lines. The first puts a natural
one-dimensional family through the null hypothesis and tests within this family. The second
is an omnibus test with power against all alternatives.

4.1. Exponential families

In the present section, the model (5) is embedded in a natural one-parameter family. Let

fβ(θ1, . . . , θn) =
(

β

2 !
)n(

nβ

2

)
!(2π)n

∏
1�j<k�n

|eiθj − eiθk |β. (6)
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This is a family of probability densities on [0, 2π)n for 0 � β < ∞. When β = 0, this is the
iid uniform measure. As β tends to infinity, it gives the picket fence model. The normalizing
constant is available using Selberg’s integral (Mehta [42], p 356). Of course, f2 gives the
density of unitary eigenvalues, Un. The density f1 arises from symmetric unitary matrices,
Un/On. For n even, the density f4 arises for anti-symmetric unitary matrices, U2n/SP2n.
Sarnak and Katz [35] have given some evidence that the zeros are related to eigenvalues of
random matrices in the compact symplectic group SP2n. Directly comparing along present
lines is impossible since elements of SP2n have eigenvalues in complex conjugate pairs. This,
of course, does not occur in our data. Nevertheless, it suggests a look at β = 4. Of course,
this gives the eigenvalues for the symplectic ensemble (i.e. the eigenvalues of antisymmetric
unitary matrices), not the classical symplectic group.

The model (6) is a one-parameter exponential family. Lehmann [40] and Brown [9]
develop the theory of exponential families, showing that optimal tests exist within this model.
Accordingly, we apply the uniformly most powerful unbiased test of the hypothesis that

β = β0 = 2 to our data. Let
{
e2π iθ (m)

j

}n,N

j=1,m=1 represent the m = 1 through N realizations of n
‘eigenvalues’ formed from the zeros data. We can write the joint density of the data under the
null hypothesis as

exp
(
β0T

(
θ

(m)

j

) − NA(β0)
)

where T = T
(
θ

(k)
j

) = ∑N
m=1

∑
1�j<k�n log

∣∣eiθ (m)
j −eiθ (m)

k

∣∣ and A(β) = log
(

nβ

2 !
)−n log

(
β

2 !
)
+

n log(2π). By standard asymptotic theory, under fβ0 , T is approximately normally distributed
with mean A′(β0) = 69.8616 and variance A′′(β0)

N
= 3.6042

N
= 3.0287× 10−3. An approximate

1%-level test of the null hypothesis, β0 = 2, fails to reject if and only if T/N ∈ [69.72, 70.00].
Since T/N evaluates to 69.9946 on our data, we do not reject at the 1%-level, but we do at
the 5%-level; the p-value is 0.0157. The maximum likelihood value of β is 2.0375. The 99%
confidence interval for β is [1.996, 2.077]. In summary, then, although we reject β = 2 at the
5%-level, we do not reject it at the 1%-level. However, we reject the alternatives β = 1 and
β = 4 at all reasonable significance levels. Some further examples of this exponential family
test are computed in section 6.2.

4.2. A family of consistent tests for f2

Given θ1, θ2, . . . , θN in (S1)n we construct a test TN(θ1, . . . , θN) which is invariant under the
natural symmetries of f2, reasonably easy to compute and consistent against all alternatives.
The approximate distribution under null and alternatives is also available. The test can be
represented as a sum of components which are easy to interpret. These components can also
be used for adaptive versions of Neyman’s smooth test, as suggested by Fan [24].

Let µN = 1
N

∑N
j=1 δθ j be the empirical measure of the data. The test statistic is

TN =
∫ ∫ ∏

j,k

(1 − z ei(θj−θ ′
k))−1µN(dθ )µN(dθ ′) (7)

with z a fixed parameter 0 < z < 1 (e.g., z = 0.9).
Understanding TN involves Schur functions sλ(x1, . . . , xn). For λ = (λ1, λ2, . . . , λr )

with λ1 � λ2 � · · · � λr > 0 a partition of |λ| = λ1 + · · · + λr , sλ is a homogeneous
symmetric polynomial of degree |λ|. Here λ ranges over all partitions of all numbers with at
most n parts (sλ is zero for other partitions). For example, s(0) = 1, s(1) = ∑

xi, s(2) =∑
i�j xixj , s(1,1) = ∑

i<j xixj . Standard references on Schur functions are MacDonald
[41] and Stanley [54].
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The Schur functions are the characters of the unitary group Un. They are orthonormal
with respect to f2 (defined in (5)):∫

sλ(eiθ1, . . . , eiθn)sλ′(eiθ1 , . . . , eiθn )f2(θ ) dθ = δ(λ, λ′).

The sλ determine weak convergence on (S1)n. That is, for a probability measure ν, we may
define

ν̂(λ) =
∫

sλν(dθ ).

Then, a sequence νk of probability measures on (S1)n converges in the weak star topology
to f2 if and only if ν̂k(λ) → 0 for each fixed λ 
= (0). To see this, note that the set of finite
linear combinations of Schur functions is a point separating algebra of continuous functions
on a compact space and apply the Stone–Weierstrass theorem.

In analogy with Fourier-type tests it is natural to consider weighted combinations of
|µ̂N(λ)|2. The following proposition shows that an appropriate linear combinations gives TN .

Proposition 4.1. For any z ∈ (0, 1), TN defined in (7) satisfies

TN =
∑

λ

z|λ||µ̂N (λ)|2. (8)

Proof. The Cauchy identity (Stanley [54], p 322) shows∏
j,k

(1 − xjyk)
−1 =

∑
λ

sλ(x)sλ(y)

as formal power series. Let xj = z eiθj , yk = e−iθ ′
k . Since sλ is homogeneous of degree |λ|

with real coefficients, integrating the identity with respect to µN(dθ) × µN(dθ ′) gives∫ ∫ ∏
j,k

(
1 − z ei(θj−θ ′

k)
)−1

µN(dθ )µN(dθ ′) =
∑

λ

z|λ||µ̂N (λ)|2.
�

Remark. From the equality, the infinite sum of squares converges to an almost surely finite
limit.

The following proposition gives the limiting distribution of TN under the null distribution.

Proposition 4.2. If θ1, . . . , θN are independently drawn from f2.

N(TN − 1) �⇒
∞∑

j=1

zjGamma(p(n, j))

with p(n, j) the number of partitions of j with at most n parts and where each Gamma(a) is
an independent gamma variable with density xa−1 e−x/�(a).

Proof. By the usual central limit theorem, for any fixed λ 
= (0),
√

Nµ̂N(λ) converges to a
mean zero standard complex normal distribution. Further, for any finite collection of λ, the
limiting variates are independent. Thus, N |µ̂N (λ)|2 converge to independent exponentials.
The theorem follows by collecting powers of z|λ|. �

We carried out the test based on WN = N(TN −1) with four datasets (see table 2). In each
case we took N = 1000, n = 42 and z = 1

2 . The first dataset is a sample from Haar measure;
this gives a check on our computations and on the limiting approximations. The second
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Table 2. WN = N(TN − 1) with N = 1000, n = 42, z = 1
2 .

Dataset Haar on U42 Zeta zeros Picket fence U84/2

WN 2.17 2.31 7.94 2.82

Table 3. P (W∞ � wp) = p from proposition 4.2 with z = 1
2 .

p 0.05 0.10 0.25 0.50 0.75 0.90 0.95

wp 1.58 1.72 1.99 2.35 2.82 3.35 3.75

Table 4. Expected value of WN = N(TN − 1) under unitary, uniform and picket fence models for
n = 42, N = 1190.

Un Uniform points Unperturbed picket fence

z = 0.5 2.46 4.39 × 1012 −1189
z = 0.9 6.97 × 105 1.00 × 1042 −1188
z = 0.99 4.8 × 1034 1.00 × 1084 2.80 × 1019

dataset is the zeta data. The third dataset is the picket fence model with random perturbations,
as explained at the end of section 2. The final dataset, labelled U84/2, is explained in
section 6.2.

Using proposition 4.2, we prepared table 3, which lists certain percentiles of W∞, the
limiting approximation to WN . This table is based on 20 000 Monte Carlo samples. More
accurate approximations are available using methods described in Beran [4].

We see that the Haar dataset and the zeta dataset fall in the middle of the distribution, so
this omnibus test offers no evidence for rejecting the null hypothesis. The picket fence model
fails badly; recall that this model was indistinguishable from the null under the trace test. Thus
the omnibus test has some discriminating power despite the high dimensions.

Remark. The numbers p(n, j) are the coefficients of zj in
∏n

a=1(1 − za)−1. They are
thoroughly studied by Andrews [2]. From this, EW∞ = ∏n

a=1(1 − za)−1 − 1. The expected
value of WN is not hard to compute under the uniform and picket fence models.

Under the uniform model,

EU(WN) = 1

(1 − z)n
− 1.

Under the picket fence model with equally spaced, unperturbed points,

EPF (WN) = 1

(1 − zn)n
− N

We can see that the large N behaviour of these departures from the null hypothesis leads
to very different behaviours in table 4.

The following proposition gives the asymptotic distribution of TN under a general
alternative distribution.
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Proposition 4.3. Let ν be a probability on (S1)n which is different from f2. Let θ1, θ2, . . . , θN

be independently drawn from ν. Then√
N(TN − µ) �⇒ Normal(0, σ 2) for N large

with µ = ∫
r2(θ )f2(θ ) dθ , σ 2 = 4

[∫
(
∫

r(θ )g(θ , θ ′)f2(θ ) dθ )2ν(dθ ′) − µ2
]

and g(θ , θ ′) =∏
j,k

(
1 − z

1
2 ei(θj−θ ′

k)
)−1

, r(θ ) = ∫
g(θ , θ ′)ν(dθ ′).

Proof. The argument follows section 4 of Giné [26] quite closely.
From the Cauchy product,

g(θ , θ ′) =
∑

λ

z
|λ|
2 sλ(θ )sλ(θ

′).

We claim that TN(θ1, . . . , θN) can be represented as

TN = 1

N2

∫ ∣∣∣∣∣∣
N∑

j=1

g(θ , θ j)

∣∣∣∣∣∣
2

f2(θ ) dθ . (9)

For this compute∣∣∣∣∣∣
∑

j

g(θ , θ j)

∣∣∣∣∣∣
2

=
∑
j,k

g(θ , θ j)g(θ , θk).

Now

g(θ , θ j)g(θ , θk) =
∑
λ,λ′

z
|λ|+|λ′|

2 sλ(θ )sλ′(θ )sλ(θ j)sλ′(θk).

Integrating with respect to f2(θ ) and using orthonormality gives∫
g(θ , θ j)g(θ , θk)f2(θ ) dθ =

∑
λ

z|λ|sλ(θ j)sλ(θ
k).

Summing over j and k gives equation (9) on the left and equation (8) on the right, proving
the claim. Now, proposition (4.6) of Giné can be used to complete the result. �

To conclude this section, we mention a connection between the omnibus test based on
TN and the trace test of section 2. The normality of the trace of random unitary matrix was
extended to joint normality of the trace of powers in [22] (see also Johansson [32] and Diaconis
and Evans [20]). Thus, for M uniform in Un and Borel sets Aj ⊂ C. Let � be the standard
complex normal measure (the law of Z1 + iZ2 with Zj independent real Normal(0, 1

2 )). The
result is

P {tr(M) ∈ A1, tr(M2) ∈ A2, . . . , tr(Mk) ∈ Ak} →
k∏

j=1

�(Aj/
√

j). (10)

A variety of tests can be based on (10). As an example, consider the picket fence model
introduced at the end of section 2; this has e2π i�j with �j = j

n
+anZj +U,Zj standard normal,

U uniform and an = 1
2π

√
log n

n−1 . It is easy to show that E
∣∣∑

j e2π ib�j

∣∣2 = n
(
1−(

1− 1
n

)b2) =
b2
(
1 + O

(
1
n

))
. In contrast, the proof of (10) implies that EUn

|tr(Mb)|2 = b. Thus, tests based
on |tr(Mb)|2 will reject the picket fence model for b � 2.

We now argue that tests based on equating moments of the various traces combine to give a
test equivalent to the test based on TN above. To see this, recall that the power sum symmetric
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functions are defined by Pj (x1, . . . , xn) = ∑
i x

j

i and for λ a partition Pλ(x1, . . . , xn) =
Pλ1 · Pλ2 · · · Pλr

. If M has eigenvalues {eiθ1, . . . , eiθn}, tr(Mj) = Pj (eiθ1 , . . . , eiθn ) and∏∞
j=1 tr(Mj)dj = Pλ(eiθ1 , . . . , eiθn ), where λ has dj parts equal to j . The Schur functions and

power sum symmetric functions are linear combinations of one another. Thus, the components
µ̂N(λ) can be expressed as linear combinations of various moments of traces. In particular,
the Cauchy product can be expanded as∏

i,j

(1 − xiyj )
−1 =

∑
λ

1

ξλ

Pλ(x)Pλ(y)

with ξλ = ∏∞
j=1 jdj dj !. This gives

TN =
∑

λ

z|λ||µ̃N (λ)|2 where µ̃N (λ) =
∫

1√
ξλ

Pλ(θ )µN(dθ ).

As a further aid to understanding, we note that the components of the test statistic TN in
its two expansions can be equated in the following sense.

Proposition 4.4. With notation as in propsition 4.3, for each j = 0, 1, 2, . . .∑
λ�j

|µ̂N(λ)|2 =
∑
λ�j

|µ̃N(λ)|2 (11)

where

µ̂N(λ) = 1

N

N∑
i=1

sλ(Mi) µ̃N(λ) = 1

N

N∑
i=1

Pλ(Mi)√
zλ

.

Proof. The argument rests on an explicit change of basis formula between the power sums
and Schur functions. For λ and γ partitions of n with γ having di parts equal to i. Let χ

(γ )

λ be
the character of the symmetric group Sn at the λth irreducible and γ th conjugacy class. Let
ξλ = ∏n

j=1 jdj dj ! and c
γ

λ = χ
(γ )

λ

/
ξγ . A formula of Frobenius (see chapter 1 of [41]) says that

sλ = ∑
γ�j c

γ

λ Pγ . Then the left-hand side of (11) may be written as

∑
λ�j

1

N2

N∑
a=1

N∑
b=1

sλ(Ma)sλ(Mb) = 1

N2

N∑
a=1

N∑
b=1

∑
λ�j

∑
γ�j

∑
η�j

(
c
γ

λ c
η

λ

)
P γ (Ma)Pη(Mb).

After bringing the sum over λ inside, the second orthogonality relation for characters
gives ∑

λ�j

c
γ

λ c
η

λ = ξ−1
γ δγ,η.

Thus, the left-hand side of (11) equals the right-hand side:

∑
γ�j

1

N2

N∑
a=1

N∑
b=1

1

ξγ

P γ (Ma)Pγ (Mb).

�

Remark. From proposition 4.3, for j � 1 and N large, the sums in proposition 4.4 have
Gamma(n, j) distributions under the null hypothesis.
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5. Problems of dependence

Consider the tests of the trace for normality. The data of section 2 consists of W1, . . . ,WN .
Under the null hypothesis Wi has an exponential distribution. A statistic SN = SN(W1, . . .WN)

was computed and SN was calibrated under the hypothesis that Wi are exponential and
independent. In this section we omit the hypothesis of independence and calibrate under the
weaker hypothesis that Wi are exponential and stationary.

One motivation for doing this comes from computing the serial correlation:

ρ̂1 =
∑N−1

i=1

(
Wi − 1

N−1

∑N−1
j=1 Wj

) (
Wi+1 − 1

N−1

∑N
j=2 Wj

)
√∑N−1

i=1

(
Wi − 1

N−1

∑N−1
j=1 Wj

)2
√∑N−1

i=1

(
Wi+1 − 1

N−1

∑N
j=2 Wj

)2
.

For the data at hand, ρ̂1 = −0.2 indicating weak but significant negative dependence.
Moore [44] and Gleser and Moore [27] give evidence that dependence can be badly confounded
with goodness of fit. A second motivation comes from the wealth of experience with the
Gaussian unitary ensemble (GUE) of random matrix theory. In a sequence of remarkable
papers, Berry [5, 6] has argued for stationarity and a specific correlation structure. This
implies that the wrapped zeros and so Wi would also be stationary. In hypothesis 5.1, we
reframe the null hypothesis to allow stationarity.

The ergodic theorem implies that statistics such as A2 will tend to zero with increasing
sample size under the null hypothesis 5.1. Thus our test is asymptotically consistent, even
under stationarity. Tools for calibrating the distribution of test statistics under stationarity have
recently become available. We follow the development in Politis–Romano–Wolf [48]. They
give extensive references to the work of Carlstein, Kunsch and many others.

Let b be a block size and let us define SN,b,t to be the statistic evaluated on the block
{Wt, . . . ,Wt+b−1}. The sampling distribution of SN under the null hypothesis is approximated
by

ĜN,b(x) = 1

N − b + 1

N−b+1∑
t=1

δ(SN,b,t � x).

The critical value is then gN,b(1 − α) = inf{x : ĜN,b � 1 − α} and a level-α test rejects if
SN > gN,b(1 − α).

Politis–Romano–Wolf (theorem 3.5.1) prove that this gives an approximate level-α test
under H0 provided N ↗ ∞, b ↗ ∞, b/N → 0. They assume the underlying stationary
sequence is strongly mixing.

We carried out this test with the Anderson–Darling test statistic (2) when N = 1190 and
b = 35 (b

.= √
N). The distribution of ĜN,b(x) is shown in figure 12. For this choice of

b, gN,b(0.95) = 2.2875.
In section 9.4, Politis, Romano and Wolf suggest a data-dependent way of choosing the

block size for this kind of test:

(i) For b = bsmall to bbig, compute gN,b(1 − α) as above.
(ii) For each b compute a volatility index V Ib as the standard deviation of the values

{gN,b−h(1 − α), . . . , gN,b+h(1 − α)}.
(iii) Pick b∗ corresponding to the smallest V Ib and use gN,b∗(1 − α) as the critical value.

We choose bsmall = 10, bbig = 300 and h = 30. The values gN,b(0.95) are shown in
figure 13. The procedure gave b∗ = 106, gN,b∗(0.95) = 2.28. Finally, SN = 1.1050, so we
are well within the acceptance region. In contrast, the critical value of a 0.05-level test based
on the Anderson–Darling statistic under independence is g(0.95) = 2.4.
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Figure 12. Approximate sampling distribution of SN (for b = 35).
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Figure 13. Graph of gN,b(0.95) versus b.

We conclude that, as far as traces are concerned, the zeta data fits the null hypothesis and
that the stationary dependence has only a small effect on this test.

Finally, we assess the effect of dependence on the exponential family test discussed in
section 4.1. Accordingly, we define

SN = 2 log

∏N
i=1 fβ̂(θ i)∏N
i=1 f2(θ i)

= 2

[
(β̂ − 2)

N∑
i=1

T (θ i) − N(A(β̂) − A(2))

]
.

Here, β̂ is the maximum likelihood estimate of β. On the full dataset, β̂ = 2.0375 and
S = 5.902. Using the block size b∗ = 106 as chosen above, we found

gN,b∗(0.95) = 4.371 gN,b∗ (0.99) = 5.7783 gN,b∗(0.992) = 5.9258.

Thus, adjusting for correlation, the null hypothesis is rejected at even the 1%-level.
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Figure 14. Permutation group, S42.

The above considerations show that the lack of independence makes only a small
difference. For the record, we offer a reformed hypothesis.

Hypothesis 5.1. For large T and B = o(
√

T ), let n = ⌊
log T

2π

⌋
. The N = �(B−1)/n� groups

of zeros, wrapped around the unit circle, form a limiting stationary process with marginal
distribution equal to the eigenvalue distribution under Haar measure on Un.

6. Remarks

6.1. Other groups

Random matrix theory is thought to apply to ‘typical’ unitary matrices in some hard to specify
fairly strong sense. Mehta [42] gives further discussion.

As an example, consider the permutation group Sn in its n-dimensional representation
via permutation matrices. Wieand [59] has proved that for large n, a random element of
Sn has eigenvalues which obey the limiting normal distribution with correlations given by
theorem 3.1. Figure 14 shows the correlations between shifted quarter circles for S42. The
figure has some forced extra regularities; first, the representations are orthogonal so that the
eigenvalues come in complex conjugate pairs. Second, because of number theory involving
cycle lengths, Wieand’s theorems only apply to intervals with irrational lengths (as opposed
to quarter circles). Further developments on Wieand’s result can be found in [30].

This example shows that the correlations plots of section 3 have some discriminating
ability. It reinforces our surprise at the close match shown in figures 7 and 8. We find it an
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Table 5. Exponential family test results on suggestive datasets.

Dataset U84/2 Zeta-42 Zeta-24 Picket fence

β̂ 1.96 2.09 2.06 0.246
Deviance 6.44 6.71 3.27 6.4 × 104

p-value 0.011 0.0096 0.0705 ≈0

interesting problem to prove that naturally occurring series of groups (e.g., Chevally groups)
have eigenvalues close to the unitary ensemble in high-dimensional representations.

6.2. Conclusions and suggestions

This paper presents evidence of striking non-local structure in the zeros of the zeta function.
Hypothesis 1.1 has been tested in two low-dimensional projections (traces and interval
correlations) and in a one-parameter family. This last gives a first instance to question
the validity of hypothesis 1.1.

The research reported above suggests that the unitary eigenvalues as well as the zeta data
may have a self-similar structure along the following lines: consider a random matrix M in Un

with eigenvalues {eiθj }. Take m consecutive eigenvalues from a randomly chosen start. Wrap
these eigenvalues around the circle as in section 1.1.

We hypothesize that the resulting points will be indistinguishable from Haar measure
distributed points from Um provided that both n and m are large. A test for this hypothesis
using the omnibus procedure of section 4.2 with n = 84, m = 42 appears in table 2 under
the name U84/2. Using N = 1000 samples, the resulting omnibus test does not reject the null
hypothesis.

It should be possible to prove (or disprove) this self-similarity claim, at least for the
unitary group. Some related facts are now proved. Rains [49] shows that if M is chosen from
Haar measure on U2n, then the eigenvalues of M2 are exactly distributed as the union of the
eigenvalues of two random choices in Un. He has similar results for higher powers and for
other compact Lie groups. Forrester and Rains [25] classify matrix ensembles which have the
property that if one extracts every other eigenvalue, then the result exactly follows a matrix
ensemble.

We have begun to investigate the departures found with the exponential family test of
section 4.1. Table 5 reports results on four fresh datasets. U84/2 is as described above. The
two zeta datasets are based on 10 000 zeros starting at about the 1012th. For the first (zeta-42),
the data was broken into 238 groups of size 42. For the second (zeta-24), the data was broken
into 416 groups of size 24 (T12

.= 2.67 × 1011, so n
.= log

(
T12
2π

) .= 24.4). We conjecture that
as T goes to ∞, we will see β going to 2; here we have a somewhat better fit at 1012 but since
it is based on 1

5 th the data, this is not surprising. The last dataset is based on the picket fence
model described at the end of section 2. The exponential family test clearly has ample power
against the picket fence model. We find the results on the other datasets tantalizing, but leave
their interpretation to the reader.
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[26] Giné M E 1975 Invariant tests for uniformity on compact Riemannian manifolds based on Sobolev norms Ann.
Stat. 3 1243–66

[27] Gleser L and Moore D 1983 The effect of dependence on chi-squared and empirical distribution distribution
tests of fit Ann. Stat. 11 1100–18

[28] Goodman R and Wallach N 1998 Representations and Invariants of Classical Groups (Cambridge: Cambridge
University Press)

[29] Guhr T, Müller-Groeling A and Weidenmüller H 1998 Random matrix theories in quantum physics: common
concepts Phys. Rep. 299 189–425

[30] Hambly B, Keevash P, O’Connell N and Stark D 2000 The characteristic polynomial of a random permutation
matrix Stoch. Process. Appl. 90 335–46

[31] Hejhal D, Friedman J, Gutzwiller M and Odlyzko A (ed) 1999 Emerging Applications of Number Theory
(Berlin: Springer)

[32] Johansson K 1997 On random matrices from the compact classical groups Ann. Math. 145 519–45
[33] Johnstone I 2001 On the distribution of the largest eigenvalue in principle components analysis Ann. Stat. 29

295–327



2906 M Coram and P Diaconis

[34] Karatsuba A and Vornonin S 1991 The Riemann Zeta Function (Berlin: De Gruyter)
[35] Katz N and Sarnak P 1999 Random Matrices, Frobenius Eigenvalues and Monodromy (Providence, RI: American

Mathematical Society)
[36] Katz N and Sarnak P 1999 Zeros of zeta functions and symmetry Bull. Am. Math. Soc. 36 1–26
[37] Keating J 1999 Random matrix theory, Lecture at MSRI
[38] Keating J and Snaith N 2000 Random matrix theory and ζ(1/2 + it) Commun. Math. Phys. 214 57–89
[39] Keating J and Snaith N 2000 Random matrix theory and L-functions at s = 1

2 Commun. Math. Phys. 214
91–110

[40] Lehmann E 1986 Testing Statistical Hypotheses 2nd edn (New York: Springer) pp 209–13
[41] Macdonald I 1995 Symmetric Functions and Hall Polynomials (Oxford: Oxford University Press)
[42] Mehta M 1991 Random Matrices 2nd edn (Boston, MA: Academic)
[43] Montgomery H 1973 The pair correlation of the zeta function Proc. Symp. Pure Math. 24 181–93
[44] Moore D 1982 The effect of dependence on chi-squared tests of fit Ann. Stat. 10 1163–71
[45] Neyman J 1937 ‘Smooth’ tests for goodness-of-fit Skand. Aktuarietidsk 20 149–99
[46] Odlyzko A 1987 On the distribution of spacings between zeros of the zeta function Math. Comp. 48

273–308
[47] Odlyzko A 1999 The 1020-th zero of the Riemann zeta function and 70 million of its neighbors Technical Report

AT&T Bell Laboratories
[48] Politis D, Romano J and Wolf M 1999 Subsampling (New York: Springer)
[49] Rains E 1999 Images of eigenvalue distributions under power maps webpage html://front.math.ucdavis.edu/

math.PR/00008079
[50] Rudnick Z and Sarnak P 1996 Zeros of principal L-functions and random matrix theory Duke Math. J. 81

269–322
[51] Selberg A 1946 Contributions to the theory of the riemann zeta-function Arch. Math. OG. Naturv. B 48 89–155

(Reprinted with commentary in the collected works)
[52] Soshnikov A 1998 Level spacings distribution for large random matrices: Gaussian fluctuations Ann. Math. 148

573–617
[53] Soshnikov A 2000 Gaussian fluctuation for the number of particles in Airy, Bessel, sine, and other determinantal

random point fields J. Stat. Phys. 100 491–522
[54] Stanley R 1999 Enumerative Combinatorics vol 2 (Cambridge: Cambridge University Press)
[55] Stein C 1994 The accuracy of the normal approximation to the distribution of the traces of powers of random

orthogonal matrices Technical Report Department of Statistics, Stanford University
[56] Titchmarsh E 1986 The Theory of the Riemann Zeta Function 2nd edn (Oxford: Oxford University Press)
[57] Verdinelli I and Wasserman L 1998 Bayesian goodness-of-fit testing using infinite-dimensional exponential

families Ann. Stat. 26 1215–41
[58] Wieand K 1998 Eigenvalue distributions of random matrices in the permutation group and compact Lie groups

PhD Thesis Department of Mathematics, Harvard University
[59] Wieand K 2000 Eigenvalue distributions of random permutation matrices Ann. Probab. 28 1563–87


